Устройство и принцип работы трансформаторов

Трансформатор преобразует напряжение с помощью взаимоиндукции. И по сути эта делать простая, но очень эффективная. Это происходит благодаря переменному магнитному полю, которая связывает несколько катушек друг с другом. Трансформатор преобразует только переменные и импульсные токи.

Как работает трансформатор

Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.

Что такое индукция

Если по проводу пустить электрический ток, то возникнет магнитное поле.

Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического. Способность материала создавать магнитное поле называется индуктивностью.

Чем больше материал может создать магнитное поле, тем выше его индуктивность.

Магнитное поле можно увеличить, если сделать катушку. Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.

Это и есть катушка индуктивности.

Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.

Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживаться. И вся так энергия, которая была в магнитном поле, переходит в электрическую.

Изменение магнитного поля создает электрическое поле.

Увеличение индуктивности сердечником

А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.

Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.

Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.

Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.

Взаимоиндукция и принцип передачи тока

Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.

Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.

При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.

Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.

А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.

Чтобы передать ток от первой катушку нужно переменной источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле создает переменный ток.

И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.

Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую часть используя электромагнитное поле.

Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.

Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это чаще всего исходит от катушек или их сердечников. Это из-за индукции. Магнитное поле частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.

Устройство трансформатора

А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.

Трансформатор работает только с переменным, импульсным или любым другим напряжением, у которого изменяется значение со временем.

Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, КПД может доходить до до 99%.

Классический трансформатор

Разберем устройство классического трансформатора.

Основная его функция — это снижение пили повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц).

Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).

На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.

Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В, с небольшим запасом из-за колебаний сети.

Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явление взаимоиндукции. На графике показана примерная разница по синусоиде.


На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.

Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.

Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.

От чего зависит мощность трансформатора

При расчете учитываются следующие параметры:

  • Размеры магнитопровода (сердечника);
  • Количество витков;
  • Сечение провода;
  • Количество обмоток;
  • Частота работы.

И все эти значения меняются в зависимости от мощности и требуемых параметров.

Типы классических трансформаторов

Ш-образные (стержневые) состоят из Е-пластин, которые изолируются друг от друга лаком. Однако в плане эффективности преобразования мощности, это не самый лучший вариант. Магнитный поток получается неравномерным. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто в виду того, что катушку можно установить в сердечник после намотки.

П-образные (броневые) отличается особенностями установки и магнитопроводом. Этот тип противоположность стержневому. Его обмотки находится внутри него, а у стержневого наоборот, снаружи.

Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключается в том, что сердечник имеет форму тора. Он замкнут, и поместить сердечник так просто как и стержневых и броневых, не получится. Можно и разъединить трансформаторное железо на две полукруглые части, но обмотку не получится намотать. Она будет не такая плотная и ровная. Поэтому, наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.

Режимы работы трансформаторов

Есть три основных режима:

  1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
  2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
  3. Режим кроткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.

Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.

Импульсные трансформаторы

У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.

Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках, зарядных устройствах чаще всего сделаны на импульсных трансформаторах.


Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это кается TFT мониторов.

Почему сердечник не делают сплошным

Сердечники (магнитопроводы) делают из железных пластин потому, что по время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводки обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки. Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин. Пластины могут быть покрыты лаком, или изолированны бумагой между собой. Это уменьшает короткие замыкания в пластинах.

А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированны. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.

Что делает трансформатор

У трансформатора много полезных и важных функций:

  • Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.
  • Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.
  • Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др. Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И снова используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно импульсной модуляции). Такие трансформаторы называются строчными (или развертки). Такое название не спроста. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку. Например, выход усилителя 2 кОм, а трансформатор согласует и понижает напряжение. А на его катушке сопротивление всего несколько десятков Ом.
  • Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что=то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 222 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт. Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
  • Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Вопросы об устройстве трансформатора

-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.

-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.

-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор. который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.

-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Ее сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.

-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и непростой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы. Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети. Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор. Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя.

Итог

Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.

Интересные факты про трансформаторы

Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.

Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.

--
Предыдущая запись Как просто запомнить таблицу истинности
Следующая запись Почему прогрев платы не решает проблему

Ваш комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *